Reg. No:

\square

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular \& Supplementary Examinations March-2023 MATHEMATICAL AND STATISTICAL METHODS

(Common to CSM, CAD, CCC \& CIC)
Time: 3 hours
(Answer all Five Units $5 \times 12=60$ Marks)

UNIT-I

1 a Prove by the principle of mathematical induction for all n in Z ,
CO1 L5 6M

$$
P(n)=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots .+\frac{1}{1+2+3+\ldots . n}=\frac{2 n}{n+1}
$$

b Express 2072 in the binary system and represent 15036 in hexadecimal.
CO1 L2 6M
OR
2 a Factorize 809009 using Fermat's method of factorization.
CO1 L1 6M
b Find the general solution of $63 x-23 y=-7$ by using Euclidean algorithm.
CO1 L3 6M

UNIT-II

3 a Solve system of linear equations $3 x+13 y \equiv 8(\bmod 55) 5 x+21 y \equiv 34(\bmod 55)$.
CO2 L3 6M
b Define Euler phi function and compute the least residue of $2^{340}(\bmod 341)$.
CO2 L3 6M
OR
4 Solve the system of congruence $x \equiv 3(\bmod 10), x \equiv 8(\bmod 15), x \equiv 5(\bmod 84)$, using Chinese remainder theorem.

UNIT-III

5 a Define estimation and statistical inference.
b Prove that for a random sample of size $n, x_{1}, x_{2}, x_{3} \ldots x_{n}$ taken from a finite
CO3 L1 6M
population $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is not unbiased estimator of the parameter σ^{2} but $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is unbiased.

OR

6 a What is the size of the smallest sample required to estimate an unknown
proportion to within a maximum error of 0.06 with at least 95% confidence?
L1
b Define prediction interval and estimating the variance.

UNIT-IV

7 a Suppose a communication system transmits the digits 0 and 1 through many stages. At each state the probability that the same digit will be received by the next stage as transmitted, is 0.75 . What is the probability that a 0 is entered at the first stage is received as a 0 in the $5^{\text {th }}$ stage?
b The transition probability matrix of a Markov chain $\left\{x_{n}\right\}, \mathrm{n}=1,2,3, \ldots$.
having three states, 1,2 and 3 is $P=\left[\begin{array}{ccc}0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3\end{array}\right]$ and the initial
distribution is $P^{(0)}=\left(\begin{array}{ll}0.1, & 0.2, \\ 0.1\end{array}\right)$.
Find (i) $P\left(X_{2}=3, X_{1}=3, X_{0}=2\right)$. (ii) $P\left(X_{2}=3\right)$.
(iii) $P\left(X_{2}=2, X_{2}=3, X_{1}=3, X_{0}=2\right)$.

OR

8 Two boys B_{1}, B_{2} and two girls G_{1}, G_{2} are throwing a ball from one to another. Each boy throws the ball to other boy with probability $\frac{1}{2}$ and to each girl with probability $\frac{1}{4}$. On the other hand, each girl throws the ball to each boy with probability $\frac{1}{2}$ and never to the other girl. In the long run, how often does each receive the ball? Draw transition diagram.

UNIT-V

9 A petrol pump station has 4 pumps. The service times follow the exponential distribution with mean of 4 minutes and car arrive for service in a poison process at the rate of 30 cars per hour. (i) What is the probability that an arrival would have to wait in line? (ii) Find the average waiting time in the queue, average time spent in the system and the average number of cars in the system. (iii) For what $\%$ of time would a pump be idle on an average?

OR

10 A car servicing station has two bays where service can be offered CO5 L3 12M simultaneously. Due to space limitation only four cars are accepted for servicing. The arrival pattern is Poisson with 12 cars per day. The service time in both the bays is exponentially distributed with $\mu=8$ cars per day per bay. Find the average number of cars in the service station the average number of cars waiting to be serviced and the average time spends in the system.

[^0]
[^0]: *** END ***

